The information given and the recommendations made herein are based on our research and are believed to be accurate but no guarantee of their accuracy is made. In every case we urge and recommend that purchasers before using any product in full-scale production make their own tests to determine to their own satisfaction whether the product is of acceptable quality and is suitable for their particular purpose under their own operating conditions. THE PRODUCTS DISCLOSED HEREIN ARE SOLD WITHOUT ANY WARRANTY AS TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED. No representative of ours has any authority to waive or change the foregoing provisions but, subject to such provisions, our engineers are available to assist purchasers in adapting our products to their needs and to the circumstances prevailing in their business. Nothing contained herein shall be construed to imply the non-existence of any relevant patents or to constitute a permission, inducement or recommendation to practice any invention covered by any patent, without authority from the owner of this patent. We also expect purchasers to use our products in accordance with the guiding principles of the Chemical Manufacturers Association’s Responsible Care® program.

Features & Benefits
- Adhesion to a wide variety of substrates
- Full cure at room temperature
- Easy to apply
- High shear and peel strength
- Good impact strength
- Good chemical resistance

Description
PERMABOND® ET505 is a two-part, 1:1 mixable epoxy adhesive. ET505 is a semi-flexible toughened epoxy adhesive with good adhesion to a variety of substrates such as wood, metal, ceramics and some plastics and composites. Permabond ET505 forms tough bonds providing high peel resistance and high shear strength. The extended work life of this product allows for adjustment and makes it more suitable for larger applications.

Physical Properties of Uncured Adhesive

<table>
<thead>
<tr>
<th></th>
<th>ET505A</th>
<th>ET505B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition</td>
<td>Epoxy Resin</td>
<td>Amine Hardener</td>
</tr>
<tr>
<td>Appearance</td>
<td>Colourless</td>
<td>Amber</td>
</tr>
<tr>
<td>Viscosity @ 25°C</td>
<td>14,000-28,000 mPa.s (cP)</td>
<td>10,000-25,000 mPa.s (cP)</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Typical Curing Properties

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix ratio by volume</td>
<td>1:1</td>
</tr>
<tr>
<td>Maximum gap fill</td>
<td>2 mm 0.08 in</td>
</tr>
<tr>
<td>Usable / pot life @23°C</td>
<td>1-2 hours</td>
</tr>
<tr>
<td>Handling time @23°C</td>
<td>3-5 hours</td>
</tr>
<tr>
<td>Working strength @23°C</td>
<td>24 hours</td>
</tr>
<tr>
<td>Full cure @23°C</td>
<td>72 hours</td>
</tr>
</tbody>
</table>

Typical Performance of Cured Adhesive

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear strength (mild steel) (ISO4587)</td>
<td>18-21 N/mm² (2600-3000 psi)</td>
</tr>
<tr>
<td>Peel strength (aluminium) (ISO4578)</td>
<td>60-80 N/25mm (13-18PiW)</td>
</tr>
<tr>
<td>Hardness (ISO868)</td>
<td>65-75 Shore D</td>
</tr>
<tr>
<td>Elongation at break (ISO307)</td>
<td>5-10%</td>
</tr>
<tr>
<td>Glass transition temperature Tg</td>
<td>40-50°C (104-122°F)</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>15-25 kV/mm</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>0.35 W/(m.K)</td>
</tr>
</tbody>
</table>

*Strength results will vary depending on the level of surface preparation and gap.

Graph shows typical strength development of bonded components. An increase of 8°C in temperature will halve the cure time. Lower temperatures will result in a slower cure time.
Additional Information

This product is not recommended for use in contact with strong oxidizing materials. Information regarding the safe handling of this material may be obtained from the safety data sheet.

Users are reminded that all materials, whether innocuous or not, should be handled in accordance with the principles of good industrial hygiene.

This Technical Datasheet (TDS) offers guideline information and does not constitute a specification.

Storage & Handling

| Storage Temperature | 5 to 25°C (41 to 77°F) |

Surface Preparation

Surfaces should be clean, dry and grease-free before applying the adhesive. Use a suitable solvent (such as acetone or isopropanol) for the degreasing of surfaces. Some metals such as aluminium, copper and its alloys will benefit from light abrasion with emery cloth (or similar), to remove the oxide layer.

Directions for Use

1. Dual cartridges:
 a) Insert the cartridge into the application gun and guide the plunger into the cartridge.
 b) Remove the cartridge cap and dispense material until both sides are flowing.
 c) Attach the static mixer to the end of the cartridge and begin dispensing the material.
2. Apply material to one of the substrates.
3. Join the parts. Parts must be joined within 1-2 hours of mixing the two epoxy components.
4. Large quantities and/or higher temperature will decrease the usable life or pot life.
5. Apply pressure to the assembly by clamping for 5 hours or until handling strength is obtained.
6. Full cure will be obtained after 72 hours at 25°C (77°F). Heat can be used to accelerate the curing process.

Video Links

Surface preparation:
https://youtu.be/8CMOMP7hXIu

Two-part epoxy directions for use:
https://youtu.be/GRX1RyknYqc